Journal of Organometallic Chemistry, 322 (1987) 71-75 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

$(\eta^3$ -ALLYL)DICARBONYLMOLYBDENUM(II) COMPLEXES OF THE UNSYMMETRICAL DITERTIARY PHOSPHINES Ph₂PCH₂CH₂P(C₆H₄X)₂ (X = m-F, p-F or m-CF₃)

PRAMESH N. KAPOOR *, D.D. PATHAK, G. GAUR and P.C. MERCYKUTTY Department of Chemistry, University of Delhi, Delhi-110007 (India) (Received October 8th, 1986)

Summary

Complexes of the type $[XMo(CO)_2(\eta^3-C_3H_5)(P-P')]$ (X = Cl or Br; P-P' = $R_2PCH_2CH_2PPh_2$; R = m-FC₆H₄ (1a), p-FC₆H₄ (1b), m-CF₃C₆H₄ (1c)) have been prepared from the reaction of $[XMo(CO)_2(\eta^3-C_3H_5)(MeCN)_2]$ with the relevant ditertiary phosphines in acetone. From their ¹H NMR and IR data these complexes have been assigned essentially octahedral structures in which the allyl moiety is *trans* to the unidentate anion, and the two *cis*-carbonyl groups and two phosphorus donor atoms of the bidentate ligand are approximately coplanar. CO force constants have been calculated.

Introduction

Allylmolybdenum(II) complexes of the type $[XMo(CO)_2(\eta^3-C_3H_5)(MeCN)_2]$ (X = Cl, or Br) undergo interesting reactions with tertiary monophosphines PR₃ or the corresponding ditertiary phosphines. Monotertiary phosphines PR₃ (R = Ph, n-C₄H₉) are reported to undergo allyl elimination reactions with $[XMo(CO)_2(\eta^3-C_3H_5)(MeCN)_2]$ to form zerovalent carbonyl complex $[Mo(CO)_2(PR_3)_2(MeCN)_2]$ [1,2], whereas diphosphines (P-P) are reported to replace acetonitrile groups to form molybdenum(II) complexes, $[XMo(CO)_2(\eta^3-C_3H_5)(P-P')$ [3-8]. The unusual dynamic properties of these complexes are well documented [9]. A survey of the literature reveals that numerous complexes of this type with symmetrical diphosphines have been reported [5,6,9], but little is known of those involves unsymmetrical diphosphines, (1). It was thus considered of interest to prepare a few complexes containing unsymmetrical diphosphines. The main advantage of such a ligand over a symmetrical analogue is that with the former the ³¹P NMR spectrum provides direct measurement of phosphorus-phosphorus couplings. In this paper we report a

^{*} To whom all correspondence should be addressed.

few complexes of molybdenum(II) with three new unsymmetrical fluorine-substituted tetraaryldiphosphines (1) $Ph_2PCH_2CH_2P(C_6H_4X)_2$ (1a, X = m-F; 1b, X = p-F; 1c, X = m-CF₃).

Experimental

All preparations were carried out under dry nitrogen using solvents and reactants freed from moisture and oxygen by standard procedures. Physical measurements and experimental techniques were as described elsewhere [10-12].

The ¹H NMR spectra were recorded on a JEOL FX-200 spectrophotometer in $CDCl_3$, and IR spectra on a Perkin–Elmer 620 spectrophotometer with $CHCl_3$ as solvent.

Ligands were synthesised by standard methods [12]. Complexes $[XMo(CO)_2(\eta^3 - C_3H_5)(MeCN)_2]$ (X = Cl or Br) were prepared from $[Mo(CO)_3(MeCN)_3]$ by a published method [13].

Synthesis of complexes

1-Diphenylphosphino-2-bis(m-fluorophenyl)phosphinoethanechloro(\eta^3-allyl)dicarbon-ylmolybdenum(II), [ClMo(CO)₂(\eta^3-C₃H₅)(Ia)]. To a clear yellow solution of [ClMo(CO)₂(\eta^3-C₃H₅)(MeCN)₂] (0.34 g, 1.09 mmol) in 15 ml of acetone a solution of ligand 1a (0.47 g, 1.08 mmol) in 10 ml of acetone was added dropwise with stirring to give a deep red solution. The mixture was refluxed for 2 h then allowed to cool to room temperature. Solvent was removed under reduced pressure to leave an orange solid, which on recrystallization at 0°C from chloroform and petroleum ether (40-60°C) yielded orange crystals (yield 0.40 g, 70%).

1-Diphenylphosphino-2-bis(m-fluorophenyl)phosphinobromo $(\eta^3$ -allyl)dicarbonylmolybdenum(II), [BrMo(CO)₂ $(\eta^3$ -C₃H₅)(1a)]. This was prepared by the procedure described but starting from [BrMo(CO)₂ $(\eta^3$ -C₃H₅)(MeCN)₂]. It was obtained as brown crystals (yield 60%).

The analogous complexes involving ligands 1b and 1c were prepared by the same method.

Results and discussion

Analytical and physical data are given in Table 1. Solution infrared data in the carbonyl absorption region, force constants (calculated by Cotton-Kraihanzel's method [14]), and ¹H NMR data are listed in Table 2.

 $(\eta^3$ -Allyl)dicarbonylmolybdenum(II) complexes were prepared by replacement of two acetonitrile groups by the relevant diphosphine as shown in eq. 1.

$$\left[\text{XMo(CO)}_{2} \left(\eta^{3} - \text{C}_{3} \text{H}_{5} \right) (\text{MeCN})_{2} \right] + P - P' \xrightarrow{\text{acctone}}_{\text{reflux}} \left[\text{XMo(CO)}_{2} \left(\eta^{3} - \text{C}_{3} \text{H}_{5} \right) (P - P') \right] + 2\text{MeCN}$$
(1)

(X = Cl, Br; P-P' = 1a, 1b or 1c)

All these complexes are orange to brown crystalline solids, very soluble in common organic solvents such as benzene, chloroform and dichloromethane, but insoluble in n-hexane and petroleum ether.

TABLE 1

ANALYTICAL AND PHYSICAL PROPERTIES OF THE COMPLEXES $[XMo(CO)_2(\eta^3 - C_3H_5)(P-P')]$ (X = Cl, Br, P-P' = 1a, 1b or 1c)

Complex	M.p. (°C)	Colour	Analysis; (Found (calcd.) (%))		
			c	H	
$\overline{[\text{ClMo(CO)}_2(\eta^3\text{-}\text{C}_3\text{H}_5)(1\textbf{a})]}$	140-141	Orange	55.8	4.0	
			(56.2)	(4.1)	
$[BrMo(CO)_2(\eta^3 - C_3H_5)(1a)]$	145-146	Brown	52.1	3.5	
			(52.7)	(3.8)	
$[ClMo(CO)_2(\eta^3-C_3H_5)(1b)]$	155-156	Orange	56.0	3.9	
			(56.2)	(4.1)	
$[BrMo(CO)_2(\eta^3 - C_3H_5)(1b)]$	165-167	Brown	52.5	3.7	
			(52.7)	(3.8)	
$[ClMo(CO)_{2}(\eta^{3}-C_{3}H_{5})(1c)]$	108-110	Orange	51.7	3.3	
		C C	(52.0)	(3.6)	
$[BrMo(CO)_2(\eta^3 - C_1H_5)(1c)]$	123-125	Deep	48.9	3.1	
		orange	(49.0)	(3.4)	

The solution infrared spectra of complexes $[XMo(CO)_2(\eta^3-C_3H_5)(P-P')]$ exhibit two bands of equal intensity in the carbonyl absorption region (Table 2). These bands were assigned to A_1 and B_1 modes of carbonyl stretching, consistent with the C_{2v} symmetry of the complexes. These two frequencies are indicative of the presence

TABLE 2

IR AND ¹H NMR DATA FOR COMPLEXES $[XMo(CO)_2(\eta^3-C_3H_5)(P-P')]$ (X = Cl, Br, and P-P' = 1a, 1b, 1c)

Complex	$v(CO) (cm^{-1})$		Force constants (mdynes $Å^{-1}$)		¹ H NMR data (δ , ppm) ^{<i>a</i>}		
	A ₁	B ₁	K ₁	- K _i	Aromatic protons	Methylene protons	Allyl protons
$[ClMo(CO)_2(\eta^3 - C_3H_5)(1a)]$	1948(s)	1851(s)	14.57	0.75	7.20-7.60 (m)	2.30(m) 2.95(m)	1.90(d), H(a) 3.55(qt), H(s) 3.75(m), H(c)
$[BrMo(CO)_2(\eta^3-C_3H_5)(1a)]$	1952(s)	1854(s)	14.63	0.74	7.15-7.60 (m)	2.25(m) 2.95(m)	1.85(d), H(a) 3.65(qt), H(s) 3.80(m), H(c)
$[ClMo(CO)_2(\eta^3-C_3H_5)(1b)]$	1945(s)	1850(s)	14.54	0.72	7.25~7.65 (m)	2.35(m) 3.00(m)	1.85(d), H(a) 3.65(qt), H(s) 3.90(m), H(c)
$[BrMo(CO)_2(\eta^3-C_3H_5)(1b)]$	1950(s)	1860(s)	14.66	0.69	7.20–7.70 (m)	2.30(m) 3.05(m)	1.80(d), H(a) 3.60(qt), H(s) 3.70(m), H(c)
$[ClMo(CO)_2(\eta^3-C_3H_5)(1c)]$	1938(s)	1845(s)	14.46	0.71	7.25–7.70 (m)	2.50(m) 2.85(m)	2.00(d), H(a) 3.50(qt), (Hs) 3.80(m), H(c)
$[BrMo(CO)_2(\eta^3 - C_3H_5)(1c)]$	1945(s)	1854(s)	14.58	0.70	7.30–7.60 (m)	2.45(m) 2.90(m)	1.90(d), H(a) 3.55(qt), H(s) 3.85(m), H(c)

^a s = sharp, m = multiplet, d = doublet, qt = quartet; a = anti, s = syn, c = meso.

Fig. 1. Structure of complexes $[XMo(CO)_2(\eta^3-C_3H_5)(P-P') (R = m-FC_6H_4, p-FC_6H_4, m-CF_3C_6H_4; X = Cl, Br).$

of two *cis*-carbonyl groups in the complex. A comparison of CO force constants (Table 1) with those of corresponding complexes containing bidentate N-donor ligands [4] reveals a slight increase in CO stretching force constants which reflects the higher bond order expected for a CO group *trans* to π -bonding ligands (phosphorus donor atoms). Further, all the CO stretch-stretch interaction constants (K_i) are positive, i.e. $K_i > 0$.

The infrared spectra of all the complexes as KBr discs show two major changes. First, the P-aryl frequency observed at ~ 1085 cm⁻¹ in the free ligands is shifted to 1100-1110 cm⁻¹ in the complex, which can be taken as an evidence for the coordination of phosphorus to the metal [15]. Second, all these molybdenum complexes show a sharp band at ~ 885 cm⁻¹, which confirms the chelating behaviour of the ligands [16].

Under normal scanning procedures only broad featureless bands were observed in the ¹H NMR spectrum owing to strong ¹H-³¹P coupling, and so ³¹P decoupled spectra were obtained. The room temperature ¹H{³¹P} NMR spectra of the complex [XMo(CO)₂(η^3 -C₃H₅)(P-P')] exhibit three sets of resonances with intensity ratio 2/2/1 for the allyl moiety (Table 2), characteristic of the AA'BB'X spin system of symmetrical trihapto allylmetal complexes. The assignments of the chemical shifts to *anti, syn*, and *meso* protons were made as described in the literature [4].

The methylene protons of the ligands in these complexes give two complex multiplets centered at $\delta \sim 2.3$ and $\delta \sim 3.0$ ppm (Table 2), indicating differentially shielded axial and equatorial protons, and this is interpreted in terms of an AA'BB' spin system. The phenyl protons gave a complex multiplet at δ 7.20–7.70 ppm.

On the basis the data obtained, the complexes $[XMo(CO)_2(\eta^3-C_3H_5)(P-P')]$ are assigned octahedral structures in which an allyl group is *trans* to X, and the two carbonyl groups are in a *cis*-disposition. The donor atoms of the bidentate ligands are assumed to be approximately coplanar with the carbonyl ligand as shown in Fig. 1.

Acknowledgement

D.D.P. and G.G. thank the CSIR, New Delhi for financial support, and P.C.M. thanks the UGC, New Delhi for the award of a fellowship.

References

- 1 H. tom Dieck and H. Friedel, Chem. Comm., (1969) 411.
- 2 H. Friedel, I.W. Renk and H. tom Dieck, J. Organomet. Chem., 26 (1971) 247.
- 3 H. tom Dieck and H. Friedel, J. Organomet. Chem., 14 (1968) 375.
- 4 B.J. Bridson and F.G. Griffin, J. Chem. Soc. Dalton Trans., (1975) 1999.
- 5 B.J. Bridson, J. Organomet. Chem., 125 (1977) 225.
- 6 J.W. Faller, D.A. Haitko, R.D. Adams and D.F. Chodosh, J. Am. Chem. Soc., 88 (1977) 1654.
- 7 B.J. Bridson and A.A. Woolf, J. Chem. Soc. Dalton Trans., (1978) 291.
- 8 U. Franke and E. Weiss, J. Organomet. Chem., 153 (1978) 39.
- 9 J.W. Faller, D.A. Haitko, R.D. Adams and D.F. Chodosh, J. Am. Chem. Soc., 101 (1979) 865.
- 10 D.D. Ferrin, W.L.F. Armargo and D.R. Perrin, The purification of Laboratory Chemicals, Pergamon, New York, 1966.
- 11 D.D. Perrin and H.R. Smithers, J. Org. Chem., 43 (1978) 3966.
- 12 P.N. Kapoor, D.D. Pathak, G. Gaur and M. Kutty, J. Organomet. Chem., 276 (1984) 167.
- 13 R.G. Hayter, J. Organomet. Chem., 13 (1968) P1.
- 14 F.A. Cotton and C.S. Kraihanzel, J. Am. Chem. Soc., 84 (1962) 4432.
- 15 A. Sabatini and I. Bertini, Inorg. Chem., 4 (1965) 1665.
- 16 A.J. Carty, J. Cand. Chem., 45 (1967) 345.